Creating Developmental Questions

Preview

Introduction
Instructors must often determine whether or not learners have learned the information in the lesson just taught. An effective way to evaluate learning is to ask questions.

If instructors expect to develop learners’ thinking beyond recall of knowledge, they need to ask the learners developmental questions.

Such questions stimulate thinking skills that process information, not merely recall it from long-term memory.

Purpose
Use “Creating Developmental Questions” to —
- understand the concept of developmental questions.
- create developmental questions.

Description
“Creating Developmental Questions” —
- defines what developmental questions are.
- lists the steps for creating developmental questions.
- lists model questions at six developmental thinking levels.
- shows key words that elicit thinking skills beyond recall of knowledge.

Definition — developmental question
A developmental question is a question that requires the learner to process information, not simply recall it from a lecture, a handbook, or other source.

Note: “Developmental” suggests that the instructor uses this question to develop the learner’s thinking beyond simple recall of knowledge.

More…
More… Preview

Procedural action

Follow these steps to create a developmental question.

Notes:
• Example “a.” supports one sequence of steps.
• Example “b.” supports a separate sequence of steps.
• Italics style emphasizes key words or skills learned earlier.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Review key words and model questions for the recall of knowledge.</td>
<td>a. What are the individual elements of the equation for improving intelligence?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. How many M’s does the Ishikawa fishbone management tool display?</td>
</tr>
<tr>
<td>2</td>
<td>Process in some way the information you have recalled.</td>
<td>a. Judge the consequences of omitting one critical element of the equation for improving intelligence.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Rank order the top three M’s of the Ishikawa fishbone management tool.</td>
</tr>
<tr>
<td>3</td>
<td>Identify and tag which thinking skill(s) you used to process the recalled information.</td>
<td>a. Evaluating is judging the significance, value, or worth of information.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Prioritizing is ranking elements according to one or more personal values.</td>
</tr>
<tr>
<td>4</td>
<td>Select a key word or model question for any thinking skill, besides the recall of knowledge.</td>
<td>a. What would happen if you ignored one element of the equation for improving intelligence?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b. Which three of the M’s of the Ishikawa fishbone management tool are the most important for managing instructional tasks?</td>
</tr>
</tbody>
</table>

More…
Benjamin Bloom’s taxonomy of educational objectives provides the basis for creating a developmental question on one of six different levels. This table displays the six levels of Bloom’s taxonomy of educational objectives for the cognitive domain. The lowest level appears first.

<table>
<thead>
<tr>
<th>Developmental Level</th>
<th>Knowledge Process</th>
<th>Playing Games</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = lowest</td>
<td>Recall</td>
<td>“Jeopardy” focuses players on the Recall level only.</td>
</tr>
<tr>
<td>2</td>
<td>Comprehension</td>
<td>“Wheel of Fortune” focuses players on all six levels.</td>
</tr>
<tr>
<td>3</td>
<td>Application</td>
<td>Which game is more fun for players?</td>
</tr>
<tr>
<td>4</td>
<td>Analysis</td>
<td>Which appeals more to you?</td>
</tr>
<tr>
<td>5</td>
<td>Synthesis</td>
<td></td>
</tr>
<tr>
<td>6 = highest</td>
<td>Evaluation</td>
<td></td>
</tr>
</tbody>
</table>

When you create developmental questions, you can expect these results:
- Your developmental questions will stimulate your learners to use thinking skills that process the information in some way, beyond simply recalling it from memory.
- Learners’ responses will indicate how well learners have processed the information contained in the instructional phase of your lesson.

You can find the following contents on the pages shown. Each of the developmental levels includes:
- Description,
- model questions, and
- key words.

<table>
<thead>
<tr>
<th>Page</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-5</td>
<td>Recall of knowledge</td>
</tr>
<tr>
<td>4-6</td>
<td>Comprehension of knowledge</td>
</tr>
<tr>
<td>4-7</td>
<td>Application of knowledge</td>
</tr>
<tr>
<td>4-8</td>
<td>Analysis of knowledge</td>
</tr>
<tr>
<td>4-9</td>
<td>Synthesis of knowledge</td>
</tr>
<tr>
<td>4-10</td>
<td>Evaluation of knowledge</td>
</tr>
</tbody>
</table>
Recall of Knowledge

Description
Recall of knowledge is the lowest level of thinking.

At this level, learners recall knowledge merely by bringing to short-term memory some data or information stored in long-term memory.

Note: Thinkers store in long-term memory such knowledge from listening to a lecture, reading a text, or observing an actual or recorded event, *only* if they associate the knowledge with strong feelings about its value for them.

Model questions
Model questions to elicit responses that recall knowledge include:
- Who?
- What?
- Where?
- When?
- Why?
- How?
- How many?
- How much?

Key words
Key words to elicit responses which recall knowledge include:
- Define,
- Describe,
- Report,
- Select, *and*
- Tell.
Comprehension of Knowledge

Description

Comprehension is a cognitive skill that is more complex than recall of knowledge. Learners comprehend knowledge when they —

- grasp the meaning of it.
- understand the relationship of the whole concept to its parts, *and* the relationship among the parts of the whole.

Model questions

Model questions to elicit responses about the comprehension of knowledge include:

- What does this mean, in your own words?
- What is the purpose of this?
- How does this work?
- What part doesn’t fit?
- What exceptions exist?
- What is the writer saying in this section?

Key words

Key words to elicit responses about the comprehension of knowledge include:

- Explain,
- Interpret,
- Omit,
- Outline,
- Summarize, *and*
- Translate.
Application of Knowledge

Description

Application is a thinking skill that depends upon both the learner’s recall and comprehension of knowledge.

Learners apply knowledge when they —
- take it from the setting in which they originally learned it.
- fit it into a new setting.
- maintain the same relationships among the critical elements.

Model questions

Model questions to elicit responses about application of knowledge include:
- What would happen if ...?
- What other ways could you use this?
- How much change would result when ...?
- How would you use this when you return to your work site?

Key words

Key words to elicit responses about the application of knowledge include:
- Apply,
- Estimate,
- Guess,
- Predict,
- Pretend, *and*
- Try
Analysis of Knowledge

Description

Analysis is a thinking skill that depends upon the learner’s recall and comprehension of knowledge. Learners analyze knowledge when they break up any whole into its parts to find out their —

- **nature**: what the parts are.
- **proportion**: how much of the whole each part makes up.
- **function**: how the parts work with each other.
- **relationship**: how the parts fit with each other along various dimensions.

Note: Some examples of relationships include –
- spatial,
- temporal,
- logical,
- psychological,
- social,
- political, *and*
- financial.

Model questions

Model questions to elicit responses about the analysis of knowledge include:

- What is the relationship between this part and that part?
- What are the essential elements of this whole?
- Which ideas justify the writer’s conclusion?
- In what different ways can you examine this database/knowledge base?
- What categories or classes can you use to group the data?

Key Words

Key words to elicit responses about the analysis of knowledge include:

- Break down,
- Break apart,
- Classify,
- Categorize,
- Decompose,
- Distinguish,
- Partition, *and*
- Separate.

Back to Finder
Synthesis of Knowledge

Description

Synthesis is a thinking skill that depends upon the learner’s recall and comprehension of knowledge. Learners synthesize knowledge when they form a whole by bringing together separate parts.

Note: The whole that results from synthesizing may be an —
- entirely new creation.
- improved version of a familiar whole.

Model questions

Model questions to elicit responses about the synthesis of knowledge include:
- What input does this task require?
- What new ways could you put this together?
- How would you test whether this design is valid?
- What steps do you follow to plan for this task?

Key words

Key words to elicit responses about the synthesis of knowledge include:
- Build,
- Compose,
- Create,
- Design,
- Make,
- Plan,
- Propose, and
- Synthesize.
Evaluation

Description
Evaluation is a thinking skill that depends upon both the learner’s knowledge recall and comprehension.

Learners evaluate knowledge when they judge the significance, value, or worth of information, *after* an action sequence.

Note: Judging *during* an action sequence is a type of evaluation that we more accurately tag, *monitoring.*

Model questions
Model questions to elicit responses about the evaluation of knowledge include:
- What is wrong with this?
- What inconsistencies appear?
- What steps do you follow to evaluate the results of ...?
- Which is better, more ethical, important, logical, or valid?
- How could you improve this process? …this product?

Key words
Key words to elicit responses about the evaluation of knowledge include:
- Appraise,
- Choose,
- Compare,
- Criticize,
- Critique,
- Defend,
- Judge,
- Prioritize, *and*
- Rank order.

[Back to Finder]